

Type/Size	R	M	H	D	H_{1}	H_{2}	D_{1}	H_{3}	H_{4}	A	B	W	W_{1}	W_{2}	Teeth	Torque Range $(\mathrm{N} \cdot \mathrm{m})$	$\left.\begin{array}{c}\text { Tightening } \\ \text { Force }(\mathrm{kN})\end{array}{ }^{*}\right)$

${ }^{*}$) Use this tightening force information as an indication. (Tightening Force $(\mathrm{kN})=\operatorname{Torque}(\mathrm{N} \cdot \mathrm{m}) /\{0.2 \mathrm{Xd}(\mathrm{mm})\} \mathrm{d}$: nominal screw diameter)

Feature

-The handle is adjustable.

- Handle that allows setting a desired tightening torque.
-When the desired torque is reached, the handle clicks to indicate completed tightening.

Tapped type

- Tapped type has a through hole that can be used with bolts.

■Stud

Part Number		L	Weight (g)
Black	Orange		
ATCL 6×15-BK	ATCL 6×15-0G	15	167
ATCL $6 \times 20-\mathrm{BK}$	ATCL 6×20-0G	20	168
ATCL 6×25-BK	ATCL 6×25-0G	25	169
ATCL $6 \times 30-\mathrm{BK}$	ATCL $6 \times 30-0 \mathrm{G}$	30	170
ATCL $8 \times 20-\mathrm{BK}$	ATCL $8 \times 20-0 \mathrm{G}$	20	282
ATCL $8 \times 25-\mathrm{BK}$	ATCL 8×25-0G	25	284
ATCL $8 \times 30-\mathrm{BK}$	ATCL $8 \times 30-0 \mathrm{G}$	30	286
ATCL 8×40-BK	ATCL $8 \times 40-0 \mathrm{G}$	40	290
ATCL10×20-BK	ATCL10×20-0G	20	464
ATCL10×25-BK	ATCL10×25-0G	25	467
ATCL10×30-BK	ATCL10×30-0G	30	470
ATCL10×40-BK	ATCL10×40-0G	40	475

1. Lift the handle to disengage 2.Turn the handle to the teeth from the locking a desired position. element.

2. When the handle is released, the 4.Turn the handle to clamp. return spring automatically engages the teeth again for further tightening. The handle can be positioned every 30 degrees.

The handle clicks to indicate completed tightening at desired tightening torque.

How To Set Torque

The preset torque is roughly its maximum tightening torque.

1.Loosen the locking screw by inserting a hex. wench into the underside of the body.

2.Adjust the torque by turning the torqueadjusting screw in the side of the body.

3. Measure the torque with a torque wrench. - Connect a torque wrench to the Adjustable-Torque Handle.

- Apply a load in the tightening direction, and fine adjust the depth of torque-adjusting screw to reach the desired torque when the handle clicks.

4. When the desired torque is reached, tighten the locking screw.

Related Product

- CTK Torque Limiting Knobs
- CP-TCW ADJUSTABLE-TORQUE WRENCHES

Torque Performance

-For initial several thousand operations, the tightening torque decreases.(See the graph below.) Measure the torque regularly, and fine adjust the depth of torque-adjusting screw when needed.
-The tightening torque can vary. (Max. $\pm 15 \%$) Not recommended for applications where precise tightening torque is required.

Note

Adjust the torque-adjusting screw within the torque range. Do not overtighten or overloosen the screw.
■Guide for Torque Adjusting

-To reach approx. the min torque, loosen the torque adjusting screw to the same end surface level of the body, then tighten it until you feel light touch of stop. (Ensure that the torque adjusting screw does not protrude from the body when loosening it.)
-To reach approx. the max torque, rotate the torque adjusting screw depending on the above table from the approx. min torque as instructed previously.

